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ACCURACY AND PERFORMANCE OF NUMERICAL
WALL BOUNDARY CONDITIONS FOR STEADY, 2D,
INCOMPRESSIBLE STREAMFUNCTION VORTICITY

WILLIAM F. SPOTZ*
National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000, USA

SUMMARY

Three recent papers have studied fourth-order compact discretizations of the streamfunction vorticity
equations. They differed primarily in how the no-slip wall boundary conditions were handled. In this
paper, these different formulas are compared to one another, as well as to three newly proposed
formulas. Special consideration is paid to the truncation errors; in particular, it is shown that many
well-known formulations are actually more accurate by O(h) than previously reported, where h is the
mesh size. These new theoretical error rates are confirmed with an analytical model problem. The
different formulas are then compared with published driven cavity results, both in terms of accuracy and
performance, and the newly proposed high-order Jensen formula is judged to have the marginally best
combination of these properties. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fourth-order-accurate, compact, finite difference approximations to the model convection
diffusion equation have been proposed by Gupta, Manohar and Stephenson [1,2], Dennis and
Wing [3], MacKinnon and Carey [4], Dennis and Hudson [5], and MacKinnon and Johnson
[6]. Although these various discretizations are constructed via different mechanisms, the
resulting stencil coefficients are equivalent [6], and represent a class of methods which will be
referred to here as high-order compact (HOC) schemes.

Compact schemes use pointwise stencils which are restricted, by definition, to the set of
points on the cells supported by that point. They are desirable because they do not require
special formulations near boundaries and are efficient candidates for parallelization by domain
decomposition. HOC schemes are attractive for these reasons, but also for their higher
accuracy, and for the fact that they suppress numerical oscillations without the need for
artificial viscosity [6,7].

The streamfunction vorticity (c, z) representation of the steady, 2D, incompressible Navier–
Stokes equations is, by virtue of its form, an obvious candidate for the HOC scheme. In 1991,
Gupta [8] applied his fourth-order compact formulation to the solution of these equations.
This study was followed more recently by similar research by Li et al. [9], and Spotz and Carey
[10].
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In light of the equivalency of the underlying numerical methods, it is not surprising that the
three streamfunction vorticity studies produced very similar results. All three develop fourth-
order compact approximations to the velocity components; all three solve the standard
benchmark driven cavity problem in which a moving lid drives the fluid in a unit cavity; and
all three obtain accurate solutions for up to at least Re=1000 on relatively coarse meshes
without a highly sophisticated non-linear iteration or continuation technique. Gupta solves up
to Re=2000 using point-successive overrelaxation (SOR) and successive approximations. Li et
al. solve up to Re=7500 using point-SOR, Newton’s method, and continuation. Both studies
make qualitative comparisons of streamfunction and vorticity contour plots to previously
reported results in the literature for much finer meshes. Spotz and Carey solve up to Re=1000
using the generalized minimal residual (GMRES) method and successive approximation, and
also include cross-sectional comparisons of velocity and vorticity to illustrate the higher
accuracy.

The primary difference in the discretizations among the three papers is the treatment of the
no-slip wall boundary condition, and this topic is explored in the present study. The HOC
interior formulation has motivated a search for HOC boundary conditions, but a robust
formulation has remained elusive. In fact, the attempt to find any appropriate numerical
treatment for the no-slip wall boundary condition for the (c, z) equations is a long and
somewhat controversial one (see, e.g. References [11–13]), and is more difficult in the context
of a high-order scheme if maintenance of the accuracy on a compact stencil is required.

There seem to be two issues of concern [9]. First, the no-slip and no-penetration velocities
are easily related to the streamfunction, but not so easily related to the vorticity on the
boundary. In fact, Gresho [13] emphatically insists that ‘there are no BCs for the vorticity’,
and that none are needed. Second, it has not been clear whether less accuracy on the boundary
would degrade or pollute the global accuracy. Certainly, one would expect to see a degradation
in accuracy for this case (at least for a problem solved on a constant sized mesh, as they are
here), yet experimental evidence has contradicted logic [14].

Surprisingly, these two concerns about the physics and accuracy are much more tightly
connected than they might appear at first glance, and can both be addressed with a single
re-interpretation. Use of the HOC scheme originally facilitated this new interpretation, and
should clear up some longstanding and common misconceptions.

In the following section, the various wall boundary condition formulas to be studied are
derived and a rigorous analysis of truncation error is made. The order of accuracy and relative
pollution due to various boundary condition treatments are determined experimentally in
Section 3. The performance of these formulas is compared in Section 4, to determine which
gives the most accuracy with the least amount of computational ‘work.’ Finally, in Section 5,
these boundary condition formulas are compared with respect to their corresponding driven
cavity results.

2. WALL BOUNDARY CONDITION FORMULATIONS

The steady, 2D, incompressible, streamfunction vorticity equations can be summarized on a
simply-connected domain, V with no-slip, no-penetration boundary conditions on (V, as

u=
(c

(y
on V, (1)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 737–757 (1998)



NUMERICAL WALL BOUNDARY CONDITIONS 739

6= −
(c

(x
on V, (2)

−92c=z on V, (3)

−92z+ReV ·9z= f on V, (4)

(c

(s
=0 on (V, (5)

(c

(n
=9Vw on (V, (6)

where V= (u, 6) is the velocity vector, Re is the Reynolds number, f is a prescribed forcing
function, n is the local direction normal to (V, s is the local direction tangent to (V, and Vw

is the tangential wall velocity. Equations (1)–(6) are a complete specification of the problem
to be solved. Note that the two boundary conditions, Equations (5) and (6), do not involve the
vorticity. Thus, if we attempt to solve Equation (4) alone (e.g. as part of a block-iterative
algorithm applied to the fully coupled system), the system will be underspecified because there
is no immediate way to obtain vorticity values on (V.

The reader is referred to References [8–10] for fourth-order, compact discretizations of
Equations (1)–(4), although only Reference [10] includes the effects of f in Equation (4) and
Reference [9] eliminates u and 6 from the system. Equation (5) is easily satisfied by requiring
c((V) to be a constant (usually zero by convention). The discretization of Equation (6) is the
focus of the following sections.

2.1. Jensen’s formulation

Gupta chose to use Jensen’s formulation (so named by Roache [15], also known as Briley’s
formula) which can be derived as follows. Let subscript j represent the grid point located a
distance jh from any boundary. Using Taylor series, we can write

c1+ac2= (1+a)c0+ (1+2a)h
(c

(n
)
0

+ (1+4a)
h2

2
(2c

(n2

)
0

+ (1+8a)
h3

6
(3c

(n3

)
0

+O(h4),

(7)

for an arbitrary constant a. We can substitute Equations (6) and (3) into (7), utilizing the fact
that (2c/(s2=0 on a wall, and choose a = −1/8 to cancel the h3 term, to yield

c1−
1
8

c2=
7
8

c09
3h
4

Vw−
h2

4
z0+O(h4).

We can further scale by 4/h2 and rearrange to get Jensen’s formula,

z0=
7c0−8c1+c2

2h2 9
3Vw

h
+O(h2). (8)

For the driven cavity problem, Vw=0 except on the moving lid, where +Vw=u0=1.
Technically, Equation (8) is non-compact, although in a decoupled algorithm, the non-com-
pact part of the stencil is computed explicitly on the right-hand-side, and so has little effect on
the matrix solution.

It is claimed [8,15–18] that Equation (8) is an O(h2) approximation of the vorticity on the
boundary, by virtue of the second-order term which is dropped. However, the ultimate
solution error is proportional to the truncation error (provided h is small enough), and the
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truncation error is formally defined as the difference between the differential equation and its
numerical approximation. Clearly, if we take the limh�0, the term 3Vw/h in Equation (8) is
unbounded. However, if Equation (8) is written instead as

h
3

z0=
7c0−8c1+c2

6h
9Vw+O(h3), (9)

and limh�0 is used, the relation (c/(n=9Vw is recovered. Therefore, the difference between
Equation (6) and its approximation is the O(h3) term in Equation (9), not the O(h2) term in
Equation (8). Numerical experiments in Section 3 will confirm this interpretation. This also
forces us to interpret Equation (9) [or equivalently (8)], not as a Dirichlet-type boundary
condition on the vorticity, but rather as a streamfunction/velocity boundary condition, in
which the vorticity conveniently enters to model higher-order terms. This new interpretation
should also help address the concern that there are no physical BCs for the vorticity, because
the limiting case of Equation (9) makes no such claim.

2.2. The computational boundary method

Li et al. chose to handle the boundary conditions with what Huang and Yang [19] call the
computational boundary method (CBM) and what Gresho [13] classifies as a ‘modern’
formulation. Using the same subscripting convention as for the Jensen formulation, use the
fact that

9Vw=
(c

(n
)
0

=
−11c0+18c1−9c2+2c3

6h
+O(h3), (10)

to set c1=11c0/18+c2/2−c3/99Vwh/3, where Vw=0 for a stationary wall and 1 for a
moving wall. The vorticity z1 (i.e. the vorticity at distance h from the boundary) is determined
by central differencing (3) as

z1= − (dx
2 +dy

2)c1+O(h2), (11)

where dx
2 and dy

2 are the standard central difference operators for the second derivative in the
x- and y-directions, respectively. Thus z0 is never computed in the CBM and Equations (3)
and (4) are solved with high-order compact formulas only on the interior, e.g. [2h, 1−2h ]×
[2h, 1−2h ] when V is the unit square.

The logic behind this boundary condition is that no physical boundary condition is
prescribed for z, therefore, no numerical boundary condition should be imposed on z.
Furthermore, two boundary conditions are prescribed for c and therefore two numerical
boundary conditions should be imposed on c. However, since vorticity is physically produced
on the walls, the inability to compute z on the boundary is a liability. This also causes a
problem when computing the velocities1. The HOC formulas (see Reference[10]) for u and 6 are

uij=dycij+
h2

6
(dyzij+dx

2dycij)+O(h4),

6ij= −dxcij−
h2

6
(dxzij+dxdy

2cij)+O(h4),

where subscript ij now refers to point (xi, yj) on a uniform grid and dx and dy by are the
standard central difference operators for the first derivatives in the x- and y-directions,

1 Li et al. did not compute the velocities in Reference [9], and so avoided the problem.
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respectively. Clearly, the fourth-order approximations to uij and 6ij require knowledge of z

away from ij and thus the velocities at distance h from the wall will lose accuracy when z on
the wall is undefined. Fortunately, this is only a local effect.

The use of Equation (10) violates Li’s claim of ‘genuine compactness’, because it formally
requires a four-point difference stencil in a single direction to model Equation (6). More
importantly, the O(h2) and O(h3) truncation errors respectively introduced by Equations (11)
and (10) are expected to pollute the O(h4) interior formulation, destroying much of the
hard-won accuracy. Li et al. justify this choice by citing Hou and Wetton [14], who claim that
a ‘first-order vorticity boundary condition’ will not degrade a second-order interior scheme. In
reality, however, the boundary scheme used by Hou and Wetton is second-order (for the exact
same reason that the Jensen formula is third-order—see the previous and following sections),
so their failure to observe pollution is not surprising.

2.3. Second-order compact formulation

Spotz and Carey chose a third method of approximating the boundary conditions which
mirrors their development of the interior discretization. Their interior HOC scheme was
obtained by using the methodology developed by MacKinnon and Carey [4], MacKinnon and
Johnson [6] and extended by Spotz [7]. This methodology can be summarized as follows: (1)
given a governing elliptic differential equation, apply standard central differences, keeping the
O(h2) truncation error terms in the formulation; (2) differentiate the governing equation to
obtain expressions for the third and fourth derivatives in terms of lower-order and cross
derivatives with compact, O(h2) central difference approximations; (3) substitute these approx-
imate expressions back into the formulation, yielding an overall O(h4) scheme. This methodol-
ogy can also be followed for approximating the no-slip boundary condition, with the exception
that one-sided differencing must be used at the boundary, yielding additional O(h) and O(h3)
truncation error terms. Fortunately, there is more than just one governing equation available
for making the required substitutions. The details of the derivation are less trivial than for the
interior, but the end result is a set of compact higher-order difference expressions for the
no-slip boundary condition. The boundary vorticity enters this expression naturally as a result
of the HOC substitutions.

We now review and expand upon the high-order compact approximation to Equation (6) in
Reference [10]. For definiteness, consider the top wall of a rectangular cavity. On an M×N
discretization of mesh size h, we continue with the subscripting convention that ij refers to
point (xi, yj), and thus have +Vw=uiN=1 for the driven cavity problem. By Taylor series,

uiN=
(c

(y
)
iN

=dy
−ciN+

h
2
(2c

(y2

)
iN

−
h2

6
(3c

(y3

)
iN

+
h3

24
(4c

(y4

)
iN

+O(h4), (12)

where dy
− represents the one-sided backward difference operator in the y-direction. Using

Equation (3), (2c/(y2 in Equation (12) can be written as

(2c

(y2

)
iN

= −ziN−
(2c

(x2

)
iN

, (13)

= −ziN, (14)

using the fact that (2c/(x2=0 on a horizontal wall. A second-order compact (2OC)
approximation can be easily obtained by substituting Equation (14) into (12) and neglecting
the O(h2) and higher terms, i.e.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 737–757 (1998)



W.F. SPOTZ742

uiN=dy
−ciN−

h
2

ziN+O(h2), (15)

where uiN=1. This is formally an O(h2) approximation to Equation (6), just as Equation (9)
is an O(h3) approximation. Equation (15) is often scaled by 2/h in the literature, and
rearranged to isolate z. It is written as

ziN=
2
h

(dy
−ciN−uiN)+O(h), (16)

which is an old and well-known formula (introduced as early as 1928 by Thom [20]) and
incorrectly assumed to be an O(h) Dirichlet-type boundary condition, when it is, in fact, more
accurate than that.

2.4. Third-order compact formulation

Returning to our development of HOC boundary condition formulations, we can differenti-
ate Equation (13) to get

(3c

(y3

)
iN

= −
(z

(y
)
iN

−
(3c

(x2 (y
)
iN

= −
(z

(y
)
iN

−
(2u
(x2

)
iN

(17)

= −
(z

(y
)
iN

, (18)

where Equation (1) is used to relate c and u and the fact that (2u/(x2 is also zero on a
horizontal wall. A third-order compact (3OC) approximation can be obtained by building
upon the second-order boundary condition (15), substituting Equation (18) for the second-or-
der truncation term in Equation (12), and utilizing a one-sided difference approximation for
(z/(y, so that

uiN=dy
−ciN−

h
2

ziN+
h2

6
dy

−ziN+O(h3). (19)

Clearly, Equation (19) directly relates the vorticity on the boundary to interior vorticity data
and must either be solved implicitly (along with the interior vorticity equations) or lagged to
obtain values for z on the boundary.

Equation (19) was actually proposed in 1954 by Woods [21], but was originally thought to
be an O(h2) boundary condition formula.

2.5. Fourth-order compact formulations

The present interior discretization is O(h4), therefore, an O(h4) boundary condition would
be preferable to prevent a loss of accuracy. Continuing the development of Sections 2.3 and
2.4, Equation (17) can be differentiated to give

(4c

(y4

)
iN

= −
(2z

(y2

)
iN

−
(3u
(x2 (y

)
iN

. (20)

Substituting Equation (20) into (12) shows that in order to obtain fourth-order accuracy, three
approximations are needed at the wall: (1) an O(h2) approximation to (z/(y ; (2) an O(h)
approximation to (2z/(y2; and (3) an O(h) approximation to (3u/(x2(y. The third require-
ment is the easiest, simply
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(3u
(x2 (y

)
iN

=dx
2dy

−uiN+O(h). (21)

Examining the terms involving (z/(y and (2z/(y2,

−
h2

6
(z

(y
)
iN

+
h3

24
(2z

(y2

)
iN

= −
h2

6
�

dy
−ziN+

h
2
(2z

(y2

)
iN

+O(h2)
n

+
h3

24
(2z

(y2

)
iN

= −
h2

6
dy

−ziN−
h3

24
(2z

(y2

)
iN

+O(h4), (22)

and using Equation (4),

(2z

(y2

)
iN

=Re
�

uiN

(z

(x
)
iN

+6iN
(z

(y
)
iN

�
−
(2z

(x2

)
iN

− fiN= [Re ·uiNdx−dx
2]ziN− fiN+O(h2), (23)

where 6iN=0 is used. Applying Equations (21)–(23) to the third-order terms in Equation (12),
the complete, fourth-order compact (4OC) approximation to the boundary condition is

dy
−ciN−

�h
2
−

h2

6
dy

− −
h3

24
(Re ·uiNdx−dx

2)
n

ziN=uiN+
h3

24
(dx

2dy
−uiN+ fiN)+O(h4), (24)

where the unknowns c and z are grouped on the left-hand-side. Similar conditions can be
easily derived for the remaining three walls.

This formula was proposed by Spotz and Carey [10], and has been demonstrated to be
satisfactory for stationary walls, but suffers from oscillations in the vorticity on the wall when
Vw"0 and the mesh size is too large relative to the Reynolds number. As a result, they
resorted to Equation (19) for their driven cavity experiments. The oscillations are due to the
term

h3

24
(Re ·uiNdx−dx

2)ziN, (25)

in Equation (24), which is proportional to the 1D central difference convection diffusion
operator and is known to oscillate whenever the cell Peclet (or cell Reynolds) condition,

Re ·Vw ·hB2,

is violated.
We hypothesize that using a non-oscillatory formula in place of Equation (25) should

suppress the oscillations observed when using Equation (24). For example, the fourth-order
compact formula with upwind correction (4OC/U) is

dy
−ciN−

�h
2
−

h2

6
dy

− −
h3

24
(Re ·uiNdx

− −dx
2)
n

ziN=uiN+
h3

24
(dx

2dy
−uiN+ fiN)+O(h4), (26)

where dx
− would be replaced with dx

+ for the case where uiNB0.
It has also been proven [6] that the 1D HOC convection diffusion operator is non-oscilla-

tory. The 4OC formula with HOC correction (4OC/H) is thus

dy
−ciN−

�h
2
−

h2

6
dy

− −
h3

24
�

Re ·uiNdx−
�

1+
Re2uiN

2 h2

12
�

dx
2�nziN

=uiN+
h3

24
(dx

2dy
−uiN+ fiN)+O(h4). (27)
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Note that the 1D HOC formula is derived by utilizing the 1D model equation. Thus its use in
a 2D setting means that there are O(h2) terms which have been neglected, but since this
formula is scaled by h3, the overall O(h4) accuracy is maintained. The same is true for the O(h)
error introduced by the one-sided difference operator in the 4OC/U formula.

2.6. High-order Jensen formulation

The high-order compact ideas can be used to increase the accuracy of the Jensen formula
from O(h3) to O(h4) while still maintaining a three-point stencil. Beginning with Equation (7),
but including the O(h4) truncation error,

c1+ac2= (1+a)c0+ (1+2a)h
(c

(n
)
0

+ (1+4a)
h2

2
(2c

(n2

)
0

+ (1+8a)
h3

6
(3c

(n3

)
0

+ (1+16a)
h4

24
(4c

(n4

)
0

+O(h5). (28)

Setting a= −1/16 and using Equations (6) and (3) again to substitute for the first and second
derivatives, as well as Equation (18) to substitute for the third derivative, gives

3h
7

z0+
2h2

21
(z

(n
)
0

+O(h4)=
1

14h
(15c0−16c1+c2)9Vw,

where we have scaled the expression by 8/7h to get the proper truncation error. Thus, if we use

(z

(n
)
0

=
−3z0+4z1−z2

2h
+O(h2),

to substitute for (z/(n, the resulting high-order Jensen (HOJ) formula is

h
21

(6z0+4z1−z2)+O(h4)=
1

14h
(15c0−16c1+c2)9Vw. (29)

This expression is fourth-order-accurate, while using only three grid points for c and z.

3. ACCURACY STUDIES

The numerical schemes utilized here generate a class of linear systems which can be expressed
in exact form as

Au=b+t, (30)

where A is a coefficient matrix, u is a vector of nodal unknowns (representing either c or z or
both), b is the right-hand-side vector, and t={ti} is the truncation error vector, where each
component has the form

ti= %
�

p=mi

Cp,i hp.

Thus mi represents the order of the leading truncation error term at a given grid point
represented by index i, and would equal 4 for interior points, and either 2, 3, or 4 for boundary
points, depending on the boundary formulation being used.

Of course, Equation (30) is not solved, but rather
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Auh=b,

where uh is our approximate solution. The error is thus

e=u−uh=A−1t. (31)

It is easy to show that if A represents finite differencing on a mesh of constant h, then

ei8hm,

where m=min{mi}. In other words, a low-order approximation on the boundary will degrade
a high-order interior approximation on a uniform mesh.

For the present numerical experiments, a global measure of the error is required. For an
asymptotic local error of the form ei=O(hm), the root mean square (RMS) error over N total
grid points is also O(hm):

E
' %i e i

2

N
=
'N×O(h2m)

N
=O(hm).

This error norm can be used to determine convergence with respect to mesh size for the various
boundary condition formulations, in order to verify the predicted convergence rates and to
determine their relative accuracy. Therefore, an analytic model problem with known solution
was chosen, so that the errors can be computed exactly. On domain V= [0, 1]× [0, 1], let

c(x, y)=8(x−x2)2(y−y2)2, (32)

from which the exact velocities can be computed using Equations (1) and (2), and vorticity
using Equation (3). The forcing function f which drives the problem, can then be obtained
from Equation (4). This model problem is normalized such that −15z51, and was chosen
because c=u=6=0 on (V, and thus the no-slip, no-penetration wall boundary condition
holds. Note that since the wall velocities are zero, the different permutations of the 4OC
formulas collapse to the same discretization.

Experiments with the fourth-order, HOC interior discretizations were run at mesh sizes of
h=1/4, 1/8, 1/16, 1/32 and 1/64. Also, Re=0 was used to further isolate the pollution of the
boundary condition formulas. We observe the RMS of the vorticity error and estimate the
experimental convergence rate m by using

E(h=1/32)
E(h=1/64)

:2m.

Table I. Boundary condition formula names and their abbreviations

AbbreviationEquationsMethod

JensenJensen (Briley) (8)
(10), (11)Computational boundary method CBM

2nd order compact (15) 2OC
3rd order compact (Woods) (19) 3OC

4OC(24)4th order compact
4th order compact w/HOC (26) 4OC/H
4th order compact w/upwind 4OC/U(27)

HOJ(29)High-order Jensen

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 737–757 (1998)



W.F. SPOTZ746

Figure 1. Convergence of vorticity RMS error with respect to mesh size for various boundary condition formulas and
Re=0.

Table I is a compilation of the boundary condition abbreviations used throughout this paper.
The results for these boundary conditions are plotted in Figure 1.

Clearly, the second-, third-, and fourth-order compact formulas converge at the predicted
rates. The Jensen formula converges at the predicted rate of m=3, but is more accurate than
the 3OC method. These results verify the interpretation of the truncation error made in Section
2, and illustrate the point that the equation being approximated by these formulas is
(c/(n=9Vw. It is thus reasonable to assume that other formulas, derived in a similar
manner and expressed as

z((V)= · · ·+O(hm),

are in fact more accurate than reported by a factor of O(h).
Surprisingly, the CBM, for which we would expect to see O(h2) convergence (because of the

use of Equation (11)), actually converges at m=3. This phenomenon is not presently
understood, but one theory is that the data presented is not yet asymptotic, and the O(h2)
degradation only appears at smaller mesh sizes. However, the RMS vorticity error for the
CBM at h=1/128 is 5.737×10−6, which is still O(h3).

4. PERFORMANCE STUDIES

If a high-order method takes a significantly longer time to achieve its more accurate results, it
may not be worth the extra expense. Conversely, if two methods of roughly equal accuracy
converge at different rates, the faster one can be considered superior. Our goal now is to

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 737–757 (1998)
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determine for a given amount of computational ‘work,’ which boundary condition formula
yields the greatest accuracy. This will depend on the solution algorithm used and the definition
of work within the context of that algorithm.

The algorithm used here is simple, decoupled, successive approximations, as used by Gupta
[8] and Spotz and Carey [10]. This can be viewed as a block-iterative solution of the coupled
problem, as described in Reference [10]. This usually requires that the solution procedure to be
relaxed in order to prevent divergence. Li et al. [9] used a more sophisticated Newton
algorithm which was demonstrably more efficient, but the important consideration here is that
the same algorithm is used for the different boundary condition formulas for comparison
purposes. Gupta et al. [22–24], Altas et al. [25] and Zhang [26] have experimented with
multigrid methods for HOC formulas, which would also be an appropriate solution algorithm.

Conjugate gradient (CG) is used to solve the HOC approximation to Equation (3) and
generalized minimum residual (GMRES) is used to solve the non-symmetric HOC approxima-
tion to Equation (4), in contrast to Gupta and Li, who both employed point-SOR for both
HOC approximations.

Computational ‘work’ is defined as the total number of cumulative inner iterations (i.e.
iterations performed solving the matrix problems, as opposed to the outer, successive approx-
imation iterations). In the context of the successive approximation algorithm, two user-defined
quantities affect the amount of work required to converge. First is the relaxation parameter,
v, which if too small can prevent the algorithm from advancing quickly enough in each stage.
If too large, it can cause successive overshoots or divergence. The second parameter is the
linear iterations limit L which imposes a maximum on the number of inner iterations that can
be performed during each outer iteration. If set too small, then large inaccuracies are allowed
to propagate from one outer iteration to the next. If set too large, then iterations are wasted,
especially early in the algorithm, trying to converge toward inaccurate intermediate solutions.

Optimal values for v and L ostensibly depend on the formula being used, the mesh size,
and the Reynolds number Re. Informal experiments were conducted to determine near-optimal
combinations of v and L for the different boundary condition formulas. To facilitate these
experiments, a relatively coarse mesh of h=1/16 was used. The final combinations are shown
in Table II.

Interestingly, these combinations were the same for Re=0 and 100 for any given method,
implying that Re does not, in fact, have a significant effect on the optimal values of v and L.

Figures 2 and 3 show the accuracy of the various methods as a function of cumulative inner
iterations, for Re=0 and 100 respectively. Most of the methods (with the exception of CBM)
converge at roughly the same rate. Thus for these methods, the high-order formulas are as
efficient as the low-order formulas. The CBM however, converges at a slightly faster rate than
the other methods, making it vastly superior to the 2OC method (which converges more slowly

Table II. Near-optimal values of the relaxation parameter v and the inner
iteration limit L for various boundary condition formulas at h=1/16

Method v L

8Jensen 0.55
80.93CBM

2OC 0.65 8
3OC 0.60 10
4OC 0.60 10
HOJ 0.55 10
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Figure 2. Convergence of vorticity RMS error with respect to iterations for various boundary condition formulas at
h=1/16 and Re=0.

to a less accurate solution), and superior to the 3OC method (which converges more slowly to
roughly the same accuracy).

The faster convergence of the CBM is probably due to the higher permissible value of v.
However, the accuracy of the CBM is not as good as the accuracy of Jensen, HOJ or the 4OC
method. This may suggest the utility of a hybrid method which switches from CBM to a more
accurate method once the CBM has converged.

5. DRIVEN CAVITY STUDIES

We turn our attention now to using the various boundary condition formulas to solve the
standard benchmark problem of a lid-driven square cavity of fluid. The case Re=1000 is
chosen, for which there is general agreement that the HOC method can produce a reasonably
accurate solution on a 41×41 grid [8–10]. For comparison purposes, we can refer to the
uniform grid solutions of Ghia, Ghia and Shin [27], who solved the Re=1000 case on a
129×129 grid.

The differences between the analytic model problem and the driven cavity problem (non-
zero forcing function versus f=0 and stationary walls versus one moving wall) are enough to
drastically change the convergence properties exhibited by the various boundary condition
formulas. Surprisingly, the CBM, which showed the best convergence properties for the model
problem, was the most sensitive to user choices such as starting guess, relaxation parameter,
inner iteration limit, and continuation steps. It took by far the longest to converge, yet it
resulted in the best approximation by various measures. Certain formulas, such as the 4OC
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schemes with corrections, were especially sensitive to the initial guess, converging to a better
answer given a better initial guess.

In order to compare performance in a sense that could be considered ‘fair,’ all the methods
were run with the same algorithm parameters. This was overkill for some methods (e.g. 2OC
and 3OC could converge from the initial guess of zero without continuation), but necessary for
others to converge. The algorithm was started with an initial guess generated by 2OC BCs at
Re=500, and was stepped to Re=500 (to generate the differences incurred by the BC
formulas), Re=600, 700, 800, 900 and finally 1000. A relaxation parameter v=0.6 and inner
iteration limit L=10 was used. Letting

E(n)=
%i, j �z ij

n −z ij
n−1�

%ij z ij
n

+
%i, j �c ij

n −c ij
n−1�

%ij c ij
n

,

the algorithm was terminated when E(n)B10−6.
Surprisingly, the quickest convergence was achieved by the corrected 4OC schemes, with the

upwind correction converging in only 135 iterations, and the HOC correction converging in
430 iterations. But as we will see, these solutions were the two least satisfactory. The rest of
the methods ranked as follows: 2OC (925 iterations), HOJ (1280), 3OC (1301), Jensen (1331),
and 4OC (2231). The CBM failed to converge within 6000 iterations, although it should be
noted that Li et al. had success with the CBM using a Newton algorithm.

Figures 4–11 show the streamfunction and vorticity contours (using the contour values
standardized by Ghia) for HOC solutions using 2OC, 3OC, 4OC, 4OC/H, 4OC/U, CBM,

Figure 3. Convergence of vorticity RMS error with respect to iterations for various boundary condition formulas at
h=1/16 and Re=100.
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Figure 4. Second-order compact (2OC) boundary conditions for the lid-driven cavity problem, Re=1000 on a 41×41
grid.

Jensen, and HOJ boundary condition formulas, respectively. Qualitatively, these plots are very
similar, but with subtle differences. Note, for example, the minimum streamfunction contours
for the primary vortex, and the −2 ‘finger’ in the vorticity plots. Only the 3OC, CBM, Jensen,
and HOJ methods capture this finger extending as far as Ghia predicts.

Clearly, the 4OC/H results in Figure 7 are the most disappointing. The correction term
intended to suppress the oscillations in the vorticity for the 4OC formulation (not even evident
in Figure 6 due to the chosen contour levels) does more harm than good. This may be due to
the fact that the truncation error for Equation (27), while O(h4), is also proportional to Re2,
which imposes too large an error at this mesh size.

Figure 5. Third-order compact (3OC) boundary conditions for the lid-driven cavity problem, Re=1000 on a 41×41
grid.
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Figure 6. Fourth-order compact (4OC) boundary conditions for the lid-driven cavity, Re=1000 on a 41×41 grid.

Figure 12 plots the vorticity on the moving lid for the various boundary conditions (with the
exception of the CBM, which does not solve for z on the boundary). None of the methods
capture the vorticity near the corner singularities very well, which is to be expected, since all
of the formulas assume greater smoothness than is found in the neighborhood of the corners.
The 3OC, Jensen, and HOJ formulas give very good agreement, but the inaccuracy of the 2OC
method is evident. All three of the 4OC plots demonstrate unacceptably high error. Appar-
ently, using the vorticity transport equation (4) as a high-order substitution introduces
dominating truncation error terms when Re is sufficiently high.

The same conclusions can be drawn regarding the plots of the horizontal velocity compo-
nent along the cavity centerline, shown in Figure 13. 2OC, 3OC, Jensen and HOJ produce
similarly acceptable results, while the 4OC formulas are generally good, but somewhat in error
near the bottom wall. The CBM results are very good for this case.

Figure 7. Fourth-order compact boundary conditions with high-order correction (4OC/H) for the lid-driven cavity
problem, Re=1000 on a 41×41 grid.
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Figure 8. Fourth-order compact boundary conditions with upwind correction (4OC/U) for the lid-driven cavity
problem, Re=1000 on a 41×41 grid.

We now look at the strength, location, and size of the three vortices (primary, bottom left
and bottom right) present in this problem to the results of Ghia (a second bottom right vortex
is known to exist, but cannot be resolved with the present grid). This should give us some
indication of the relative ability of the different methods to capture the overall flow pattern.

Table III reports the values of c, z and the location of the primary vortex. CBM captures
the transport variables best. Table IV shows the same data, plus the horizontal length H and
the vertical length V of the bottom left corner vortex. Again, CBM produces the best c and
z, but Jensen predicts the best H and HOJ the best V. Finally, Table V repeats the same data
for the bottom right vortex. Interestingly, despite their failure to accurately capture the
vorticity behavior on the moving lid, 4OC predicts the best c and 4OC/U predicts the best H
and V. CBM captures z best in the bottom right corner.

Figure 9. Computational boundary method (CBM) for the lid-driven cavity problem, Re=1000 on a 41×41 grid.
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Figure 10. Jensen boundary conditions for the lid-driven cavity problem, Re=1000 on a 41×41 grid.

6. SUMMARY

Since at least 1928, there has been interest in methods to handle no-slip boundary conditions
for the (c, z) system. The earliest attempts using Taylor series resulted in a formula which
predicted O(h) accuracy at the boundaries, but recent studies in the context of a fourth-order
compact interior discretization have shown it to be O(h2). This has led to a re-evaluation of
the truncation error analysis of the standard Taylor series approach, which in turn has led to
the observation here that other well-known formulations, such as Jensen’s and Woods’ (here
referred to as third-order compact), are O(h3), not O(h2).

The fourth-order compact interior scheme has also motivated a search for boundary
conditions which are also high-order and compact. This paper has examined the formulas

Figure 11. High-order Jensen (HOJ) boundary conditions for the lid-driven cavity problem, Re=1000 on 41×41
grid.
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Figure 12. Vorticity on the moving lid of a driven cavity, Re=1000, for various boundary conditions on a 41×41
grid, compared with the results of Ghia, on a 129×129 grid.

already mentioned, the computational boundary method, and the fourth-order compact
formulation. In addition, three new formulas were proposed, including two corrections to the
4OC formula, and a fourth-order version of the Jensen formula.

The different formulations were tested first using an analytic model problem. This allowed
experimental verification of the predicted solution error rates and comparison of the conver-
gence properties. They were tested next on the driven cavity problem, comparing streamfunc-
tion and vorticity contours, wall vorticity plots, cross-sectional velocity plots, and vortex data
with published results on a much finer mesh. Driven cavity convergence results shed doubt on
the utility of using the model problem convergence properties in any predictive way.

Figure 13. Horizontal velocity along the vertical centerline of a driven cavity, Re=1000, for various boundary
conditions on a 41×41 grid, compared with the results of Ghia, on a 129×129 grid.
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Table III. Primary vortex data for the lid-driven cavity problem, Re=1000 on
a 41×41 grid, for various boundary condition formulas

c z (x, y)Method
−0.117929 −2.04968Ghia 0.5313, 0.5625

2OC −0.106967 −1.97142 0.5250, 0.5750
3OC −0.111965 −2.03173 0.5250, 0.5750

−0.108915 −1.981094OC 0.5250, 0.5750
4OC/H −0.110088 −2.18602 0.5500, 0.6000
4OC/U −0.110898 −2.18352 0.5500, 0.6000

−0.117240 −2.05332CBM 0.5250, 0.5750
−0.111907 −2.03300 0.5250, 0.5750Jensen
−0.112435 −2.03313HOJ 0.5250, 0.5750

The best approximations are in bold face.

Table IV. Bottom left vortex data for the lid-driven cavity problem, Re=1000
on a 41×41 grid, for various boundary condition formulas

c zMethod (x, y) H V
0.000231 0.36175 0.0859, 0.0781Ghia 0.2188 0.1680

0.0001602OC 0.19629 0.0750, 0.0750 0.2120 0.1595
0.000148 0.20976 0.0750, 0.07503OC 0.2194 0.1640
0.000138 0.20486 0.0750, 0.0750 0.21734OC 0.1627
0.000066 0.17261 0.0750, 0.07504OC/H 0.2240 0.1431
0.0000364OC/U 0.10595 0.0750, 0.0500 0.1729 0.1303
0.000174 0.23915 0.0750, 0.0750CBM 0.1281 0.1093

Jensen 0.000150 0.20968 0.0750, 0.0750 0.2189 0.1631
0.000150 0.21298HOJ 0.0750, 0.0750 0.2193 0.1641

The best approximations are in bold face.

The accuracy and performance of the various formulas for the driven cavity problem are
now summarized. The 2OC (or standard Taylor series) formula had good convergence but
only fair accuracy. The 3OC (or Woods) formula also had good convergence, as well as good
accuracy. 4OC converged poorly but had fair accuracy, except on the moving lid, where
oscillations appear. 4OC is best suited for stationary walls only. The corrected 4OC schemes,

Table V. Bottom right vortex data for the lid-driven cavity problem, Re=
1000 on a 41×41 grid, for various boundary condition formulas

VMethod c z (x, y) H
0.001751 0.35360.3034Ghia 0.8594, 0.10941.15465

2OC 0.002057 0.87004 0.8500, 0.1250 0.3672 0.3992
3OC 0.001818 1.00094 0.8500, 0.1250 0.3470 0.3956

0.39250.34250.8500, 0.12504OC 0.984700.001731
4OC/H 0.001846 0.94158 0.8500, 0.1500 0.3756 0.4339
4OC/U 0.001114 0.55195 0.8750, 0.1250 0.3067 0.3856

0.23290.23300.8750, 0.12501.044090.001360CBM
0.39700.001842Jensen 0.99143 0.8500, 0.1250 0.3490

0.001781HOJ 0.39000.34240.8500, 0.12501.02872

The best approximations are in bold face.
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4OC/H and 4OC/U, both converged very quickly to inaccurate solutions. The results were
particularly bad on the moving lid, where the corrections were intended to suppress oscillations
seen in the 4OC method. Instead, they introduced unacceptable truncation errors proportional
to Re (4OC/U) and Re2 (4OC/H).

The CBM was perhaps the most surprising formula tested. Experimental error rates are
O(h3), despite the use of standard second-order central differencing near the border. CBM
converged well for the analytic model problem, but extremely poorly for the driven cavity.
Nevertheless, CBM results were among the best observed, based upon the contour plots,
velocity plot, and vortex data. The drawback of the CBM is that z is not computed on the
boundary, but this could be corrected in a post-processing step using one of the other
formulas.

Both the Jensen and high-order Jensen formulas had fair convergence and good accuracy,
with HOJ giving slightly better approximations in most cases. As such, the HOJ formula
marginally gives the best combination of accuracy and performance of all the formulas studied.
Both methods are non-compact, since they use data a distance 2h from the boundary.
However, this is still a small stencil and its use does not violate any of the primary advantages
of compact stencils: that compact stencils require less communication when the scheme is
parallelized via domain decomposition, and eliminating the need for special formulas near the
boundaries.

Given the disparity of convergence results (4OC/U converged to a driven cavity solution for
Re=1000 in 135 iterations while CBM failed to meet the same converge criteria in 6000
iterations), it is clear that the boundary condition formulas control the convergence of the
successive approximation algorithm used here. This is because for most of the formulas (except
CBM), the vorticity on the wall represents a high-order correction to an approximation to
Vw=9(c/(n. This does not allow the wall vorticity to influence the successive approxima-
tions efficiently.

Although the boundary conditions have been studied here in the context of steady state
problems, most of them could be applied to transient problems. Only the 4OC formula and its
‘corrections’ are not currently usable in a time-dependent problem. This is because they utilize
the vorticity transport equation to model high-order truncation terms, and this equation is
slightly different in a transient setting. The term (z/(t would have to be accounted for.
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